1 2
| import torch torch.__version__
|
'1.5.1'
tensor([[ 0.0000e+00, 0.0000e+00, 0.0000e+00],
[ 0.0000e+00, 0.0000e+00, 1.1614e-41],
[ 0.0000e+00, 2.2369e+08, 0.0000e+00],
[ 0.0000e+00, 2.8699e-42, 2.8699e-42],
[ nan, nan, -1.6905e-07]])
tensor([[0.0896, 0.1420, 0.0921],
[0.5026, 0.8910, 0.7219],
[0.4368, 0.9443, 0.7994],
[0.8293, 0.0944, 0.5980],
[0.4768, 0.9790, 0.5101]])
1 2 3
| x = torch.zeros(5,3, dtype=torch.long) x
|
tensor([[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[0, 0, 0]])
torch.Size([5, 3])
1 2
| y = torch.rand(5,3) x + y
|
tensor([[0.2258, 0.2405, 0.4114],
[0.2318, 0.3827, 0.7611],
[0.1114, 0.5431, 0.2139],
[0.3742, 0.6116, 0.5016],
[0.5376, 0.2027, 0.1309]])
tensor([0, 0, 0, 0, 0])
1 2 3
| x = torch.randn(4,4) y = x.view(16) print(y)
|
tensor([-1.2441, 0.8297, 1.1797, -0.5350, 1.1497, -0.0510, 0.1188, 0.6360,
-1.9398, -0.7194, -0.3698, -1.3789, -1.4802, -1.0151, -1.5127, -0.9896])
1 2 3
| z = x.view(-1, 8) print(z) print(z.size())
|
tensor([[-1.2441, 0.8297, 1.1797, -0.5350, 1.1497, -0.0510, 0.1188, 0.6360],
[-1.9398, -0.7194, -0.3698, -1.3789, -1.4802, -1.0151, -1.5127, -0.9896]])
torch.Size([2, 8])
1 2 3
| a = torch.ones(5) print(a)
|
tensor([1., 1., 1., 1., 1.])
array([1., 1., 1., 1., 1.], dtype=float32)
1 2 3 4
| import numpy as np a = np.ones(5) b = torch.from_numpy(a) b
|
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)